Isolation of a fission yeast mutant cell affected in MAP kinase signaling and sterol biosynthesis.
نویسندگان
چکیده
We have previously demonstrated that calcineurin and the Pmk1 MAP kinase pathway play an antagonistic role in Cl-homeostasis. Using this relationship, we screened for mutations that show vic (viable in the presence of immunosuppressant and chloride ion) phenotype and isolated a vic6 mutant cell. The vic6 mutant cells also showed sensitivity to high temperature. Using this phenotype, we isolated hmg1+ gene, encoding a HMG-CoA reductase. Consistently, the vic6 mutant cells exhibited hypersensitivity to miconazole, an inhibitor of ergosterol biosynthesis and showed aberrant intracellular localization of filipin, suggesting that the mutant cells are affected in the sterol biosynthesis. In addition, overexpression of the hmg1+ gene complemented the phenotype of vic1-1/cpp1-v1 mutant cells, an allele of the gene encoding a farnesyltransferase, whereas overexpression of the cpp1+ gene exacerbated the temperature-sensitive phenotype of the vic6 mutant cells.
منابع مشابه
Insig regulates HMG-CoA reductase by controlling enzyme phosphorylation in fission yeast.
Insig functions as a central regulator of cellular cholesterol homeostasis by controlling activity of HMG-CoA reductase (HMGR) in cholesterol synthesis. Insig both accelerates the degradation of HMGR and suppresses HMGR transcription through the SREBP-Scap pathway. The fission yeast Schizosaccharomyces pombe encodes homologs of Insig, HMGR, SREBP, and Scap, called ins1(+), hmg1(+), sre1(+), and...
متن کاملThe putative lipid transporter, Arv1, is required for activating pheromone-induced MAP kinase signaling in Saccharomyces cerevisiae.
Saccharomyces cerevisiae haploid cells respond to extrinsic mating signals by forming polarized projections (shmoos), which are necessary for conjugation. We have examined the role of the putative lipid transporter, Arv1, in yeast mating, particularly the conserved Arv1 homology domain (AHD) within Arv1 and its role in this process. Previously it was shown that arv1 cells harbor defects in sphi...
متن کاملSterol-Rich Membrane Domains Define Fission Yeast Cell Polarity
Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This invo...
متن کاملAccumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion.
Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergoste...
متن کاملEvidence for a novel MAPKKK-independent pathway controlling the stress activated Sty1/Spc1 MAP kinase in fission yeast.
The fission yeast Sty1/Spc1 MAP kinase, like the mammalian JNK/SAPK and p38/CSBP1 kinases, is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, heat shock, UV light and the protein synthesis inhibitor anisomycin. Sty1 is activated by a single MAPKK, Wis1. We demonstrate that the conserved MAPKKK phosphorylation sites Ser 469 and Thr 473 in the catalytic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Kobe journal of medical sciences
دوره 55 2 شماره
صفحات -
تاریخ انتشار 2009